Migration mechanism of a GaN bicrystalline grain boundary as a model system

نویسندگان

  • Sung Bo Lee
  • Seung Jo Yoo
  • Young-Min Kim
  • Jin-Gyu Kim
  • Heung Nam Han
چکیده

Using in situ high-resolution transmission electron microscopy, we have explored migration mechanism of a grain boundary in a GaN bicrystal as a model system. During annealing at 500 °C, the grain-boundary region underwent a decrease in thickness, which occurred by decomposition or sublimation of GaN during annealing at 500 °C coupled with electron-beam sputtering. The decrease in thickness corresponds to an increase in the driving force for migration, because the migration of the grain boundary was driven by the surface energy difference. As the driving force increased with annealing time, the grain-boundary morphology turned from atomically smooth to rough, which is characterized by kinetic roughening. The observations indicate that a grain boundary exhibits a nonlinear relationship between driving force for migration and migration velocity, in discord with the general presumption that a grain boundary follows a linear relationship.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A three-dimensional study of coupled grain boundary motion with junctions

A novel continuum theory of incoherent interfaces with triple junctions is applied to study coupled grain boundary (GB) motion in three-dimensional polycrystalline materials. The kinetic relations for grain dynamics, relative sliding and migration of the boundary and junction evolution are developed. In doing so, a vectorial form of the geometrical coupling factor, which relates the tangential ...

متن کامل

Size effects in Al nanopillars: Single crystalline vs. bicrystalline

The mechanical behavior of bicrystalline aluminum nano-pillars under uniaxial compression reveals size effects, a stochastic stress– strain signature, and strain hardening. Pillar diameters range from 400 nm to 2 lm and contain a single, non-sigma high angle grain boundary oriented parallel to the pillar axes. Our results indicate that these bicrystalline pillars are characterized by intermitte...

متن کامل

بررسی توزیع انرژی ذخیره شده تغییر شکل در داخل پلی‌کریستال فلزی با استفاده از تئوری کریستال پلاستیسیته بر مبنای چگالی نابجایی

The stored deformation energy in the dislocation structures in a polycrystalline metal can provide a sufficient  driving force to move grain boundaries during annealing. In this paper, a thermodynamically-consistent three-dimensional, finite-strain and dislocation density-based crystal viscoplasticity constitutive theory has been developed to describe the distribution of stored energy and dislo...

متن کامل

A phase-field model of stress effect on grain boundary migration

We developed a phase-field model to study the stress-driven grain boundary migration in elastically inhomogeneous polycrystalline materials with arbitrary elastic inhomogeneity and anisotropy. The dependence of elastic stiffness tensor on grain orientation is taken into account, and the elastic equilibrium equation is solved using the Fourier spectral iterative-perturbation method. We studied t...

متن کامل

Experimental observations of stress-driven grain boundary migration.

In crystalline materials, plastic deformation occurs by the motion of dislocations, and the regions between individual crystallites, called grain boundaries, act as obstacles to dislocation motion. Grain boundaries are widely envisaged to be mechanically static structures, but this report outlines an experimental investigation of stress-driven grain boundary migration manifested as grain growth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016